Modeling categorical relationships

Stats 60/Psych 10
Ismael Lemhadri
Summer 2020

Last time

- Null Hypothesis Statistical Testing (NHST)
- Confidence Intervals (CI)
- The connection between NHST and CI

This time

- Modeling categorical relationships
- contingency tables
- chi-squared test for goodness of fit
- Odds ratio

What is a "categorical relationship"?

- A relationship between categorical variables
- Variables on a nominal or (sometimes) ordinal scale
- Usually expressed in terms of counts
- How many observations fall into each level of the variable?
- or each combination of levels across variables?

Are births more common on certain days than others?

data from http://chmullig.com/2012/06/births-by-day-of-year/

What kind of variable is the day of the year (recorded as a number, 1-365)?

Nominal
Ordinal
Interval
Rational

Pearson's chi-squared test for goodness of fit

$$
\chi^{2}=\sum_{i, j} \frac{\left(\text { observed }_{i j}-\text { expected }_{i j}\right)^{2}}{\text { expected }_{i j}}
$$

- Compare the observed data to the expected data
- Ho: birth rates on all days are equal
- HA: birth rates differ between days
- If births are equally likely on all days, then the expected value for each day is just the mean number of births per day across the entire year

$$
\chi^{2}=\sum_{i, j} \frac{\left(\text { observed }_{i j}-\text { expected }_{i j}\right)^{2}}{\text { expected }_{i j}}=132764.2
$$

The chi-squared distribution

- Chi-squared distribution describes the distribution of the sum of squares of a set of standard normal random variables
- with degrees of freedom (df) equal to the number of variables being summed

FIgure 13.2 The $\chi 2$ distribution changes shape with the degrees of freedom
from Field, An Adventure in Statistics

d=replicate(10000,rnorm(8)**2) dMean=apply(d,2,sum)


```
d=replicate(10000,rnorm(8)**2)
dMean=apply(d,2,sum)
```


Chi-squared test in R

chisq.test(bdata\$smoothbirths)

Chi-squared test for given probabilities
data: bdata\$smoothbirths
X-squared $=132760$, $\mathrm{df}=365$, p -value $<2.2 \mathrm{e}-16$
degrees of freedom $=N-1$
length(bdata\$smoothbirths)
[1] 366

Comparing two variables: The contingency table

Counts
Diabetes

TVOver3Hrs	No <int>	Yes <int>
FALSE	3509	225
TRUE	974	148

Proportions of total N
Diabetes

	No	Yes TVOver3Hrs
<int>		

A societally relevant example: Racial disparities in policing

- Are black individuals more likely to be searched when they are stopped by the police, compared to white individuals?

https://openpolicing.stanford.edu/

Representing the data as a contingency table

- State of Connecticut, 318,669 total stops, 2013-2015

Raw counts

	Not searched	Searched
White	239,241	3,108
Black	36,244	1,219

Proportions of total N

	Not searched	Searched
White	0.855	0.011
Black	0.129	0.004

What would we expect if there was no relationship?

Expected probabilities under independence

- Remember that if X and Y are independent, then:

$$
P(X \cap Y)=P(X) * P(Y)
$$

- So we expect:
"marginal probabilities"

	Not searched	Searched
White	$p(N S)^{*} P(W)$	$p(S)^{*} P(W)$
Black	$p(W))^{*} P(B)$	$p(S)^{*} P(B)$

Computing expected probabilities

Observed proportions

	Not searched	Searched
White	0.855	0.011
Black	0.129	0.004

Expected under independence $\left(\mathrm{H}_{0}\right)$

	Not searched	Searched
White	0.853	0.013
Black	0.132	0.002

.985 .015

How can we tell if these are different?

Pearson's chi-squared statistic for goodness of fit

$$
\chi^{2}=\sum_{i, j} \frac{\left(\text { observed }_{i j}-\text { expected }_{i j}\right)^{2}}{\text { expected }_{i j}}
$$

standardized squared

Observed

	Not searched	Searched
White	239241	3108
Black	36244	1219

Expected

	Not searched	Searched
White	238601	3748
Black	36884	579

difference

	Not searched	Searched
White	1.71	109
Black	11.1	706

$$
\chi^{2}=828.3
$$

Degrees of freedom for chi-square on contingency tables

$$
d f=(r-1)(c-1) \quad \begin{aligned}
& \text { where: } \\
& r=\text { number of rows } \\
& c=\text { number of columns }
\end{aligned}
$$

for a 2×2 contingency table:
r=2 rows
$\mathrm{c}=2$ columns
$\mathrm{df}=(2-1)^{\star}(2-1)=1$
Intuition: once we know the marginal sums, then only one number is free to vary

	Not searched	Searched	sum
White	239,241	3,108	242,349
Black	36,244	1,219	37,463
sum	275,485	4327	

Police search example: A parametric test in R

summaryDf2wayTable=summaryDf2way \%>\%
spread (searched,n) \%>\%
select(-driver_race)

driver_race <fctr>	FALSE <int>	TRUE <int>
Black	36244	1219
White	239241	3108

Police search example: A parametric test in R

```
chisqTestResult = chisq.test(summaryDf2wayTable,1,
    correct=FALSE)
chisqTestResult
```

Pearson's Chi-squared test
data: summaryDf2wayTable
X-squared $=828.3, \mathrm{df}=1, \mathrm{p}$-value $<2.2 e-16$

This is a non-directional hypothesis test H0: searches and race are unrelated HA: searches and race are related

Another example: diabetes vs. TV watching

- Example from Week 5 PSet:

Counts
Diabetes

TVOver3Hrs	No <int>	Yes <int>
FALSE	3509	225
TRUE	974	148

Proportions of total N
Diabetes
No Yes
TVOver3Hrs <int> <int>
$\begin{array}{lll}\text { FALSE } & 0.7220 .046\end{array}$

TRUE
$0.200 \quad 0.030$

Chi-squared test on NHANES diabetes/TV data

chisq.test(summaryTable[,2:3], correct=FALSE)

Pearson's Chi-squared test
data: summaryTable[, 2:3]
X-squared $=60$, df $=1, p$-value $=3 e-15$

Standardized residuals

$$
\text { standardized residual }=\frac{\text { observed }_{i j}-\text { expected }_{i j}}{\sqrt{\text { expected }_{i j}}}
$$

can be interpreted as a Z-score

Observed

	Not searched	Searched
White	239241	3108
Black	36244	1219

Expected

	Not searched	Searched
White	238601	3748
Black	36884	579

standardized residual

	Not searched	Searched
White	1.3	-10.4
Black	-3.3	26.5

Odds ratio

- Expresses the relative likelihood of different outcomes
- Odds are the relative likelihood of some event happening versus not happening

Odds ratio

- Expresses the relative likelihood of different outcomes
- Odds are the relative likelihood of some event happening versus not happening

The odds ratio is simply the ratio of two odds

$$
\text { odds of } \mathrm{A}=\mathrm{P}(\mathrm{~A}) / \mathrm{P}(\neg \mathrm{~A})
$$

Odds ratio

- Expresses the relative likelihood of different outcomes

$$
\begin{gathered}
o d d s_{\text {searched } \mid \text { black }}=\frac{N_{\text {searched,black }}}{N_{\text {not searched,black }}}=0.034 \\
\text { odds } s_{\text {searched } \mid w h i t e}=\frac{N_{\text {searched }, w h i t e}}{N_{\text {not searched,white }}}=0.013
\end{gathered}
$$

$$
\text { odds ratio }=\frac{o d d s_{\text {searched } \mid \text { black }}}{\text { odds } s_{\text {searched } \mid \text { white }}}=2.59
$$

ODDS RATIO EXAMPLE: SMOKING AND LUNG CANCER

"What is the relationship between smoking and lung cancer?

$$
\begin{gathered}
o d d s(\text { cancer in smokers })=\frac{P(\text { cancer in smokers })}{P(\text { no cancer in smokers })} \\
\text { odds }(\text { cancer in nonsmokers })=\frac{P(\text { cancer in nonsmokers })}{P(\text { no cancer in nonsmokers })} \\
\text { oddsratio }=\frac{o d d s(\text { cancer in smokers })}{o d d s(\text { cancer in nonsmokers })}
\end{gathered}
$$

ODDS RATIO EXAMPLE: SMOKING AND LUNG CANCER

Using the data from a published study (Pesch et al., 2012) we can compute these values:
" The odds of someone having lung cancer who has never smoked is 0.08
" the odds of a current smoker having lung cancer is 1.77
" The odds ratio of 23.22 tells us that the odds of cancer in smokers are roughly 23 times higher than never-smokers.

Categorical analysis beyond the 2×2 table

- Survey data example: is programming experience related to year?


```
\begin{tabular}{|c|c|c|c|c|c|}
\hline \#\# & programmedBefore & 1 & 2 & 3 & 4 \\
\hline \#\# & <lgl> & <int> & <int> & <int> & <int> \\
\hline \#\# 1 & F & 23 & 18 & 16 & 17 \\
\hline & T & 9 & 27 & 18 & 21 \\
\hline
\end{tabular}
```

programmedBefore
FALSE TRUE

Chi-squared test: year vs. programming experience

HO: Year is unrelated to programming experience HA: Year and programming experience are related

```
csResult = chisq.test(tableData$year,tableData$programmedBefore)
```

csResult
Pearson's Chi-squared test
data: tableData\$year and tableData\$programmedBefore X-squared $=8, \mathrm{df}=3, \mathrm{p}$-value $=0.04$

Group discussion

Seasonal batting averages for Derek Jeter and David Justice, 1995-7

	1995		1996		1997		Combined	
Derek Jeter	$12 / 48$	0.250	$183 / 582$	0.314	$190 / 654$	0.291	$385 / 1284$	0.300
David Justice	$104 / 411$	0.253	$45 / 140$	0.321	$163 / 495$	0.329	$312 / 1046$	0.298

How could this happen? Which one of them is a better batter?

Sometimes summaries can be misleading: Simpson's paradox

- A pattern that is present in the overall data may be reversed in different subsets of the data
- Due to a "lurking variable"
- Different frequencies of at-bats across years
- Often reflects different frequencies and proportions in subsets of the data

| | 1995 | | 1996 | | 1997 | | Combined | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Derek Jeter | $12 / 48$ | 0.250 | $183 / 582$ | 0.314 | $190 / 654$ | 0.291 | $385 / 1284$ | 0.300 |
| David Justice | $104 / 411$ | 0.253 | $45 / 140$ | 0.321 | $163 / 495$ | 0.329 | $312 / 1046$ | 0.298 |

Berkeley graduate admissions example

	Applicants	Admitted
Men	8442	44%
Women	4321	35%

Dept	$\|c\|$		Men	
	Admitted	Apps		Admitted
A	825	62%	108	82%
B	560	63%	25	68%
C	325	37%	593	34%
D	417	33%	375	35%
E	191	28%	393	24%
F	373	6%	341	7%

Recap

- We can summarize categorical variables in terms of contingency tables
- We can test for relations between categorical variables using a chi-squared test
- Sometimes combined data can be misleading
- Always important to think about potentially lurking variables

