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This time (and next week)

• Hypothesis testing 
• What p-values mean - and don’t mean 
• Connection to z-scores



The three fundamental goals of statistics

• Describe 
• Decide 
• Predict 

• Hypothesis testing provides us with a tool to make 
decisions in the face of uncertainty using data



Do checklists improve surgical outcomes?
T h e  n e w  e ngl a nd  j o u r na l  o f  m e dic i n e

n engl j med 360;5 nejm.org january 29, 2009 491

special article

A Surgical Safety Checklist to Reduce Morbidity 
and Mortality in a Global Population
Alex B. Haynes, M.D., M.P.H., Thomas G. Weiser, M.D., M.P.H.,  

William R. Berry, M.D., M.P.H., Stuart R. Lipsitz, Sc.D.,  
Abdel-Hadi S. Breizat, M.D., Ph.D., E. Patchen Dellinger, M.D.,  

Teodoro Herbosa, M.D., Sudhir Joseph, M.S., Pascience L. Kibatala, M.D.,  
Marie Carmela M. Lapitan, M.D., Alan F. Merry, M.B., Ch.B., F.A.N.Z.C.A., F.R.C.A., 
Krishna Moorthy, M.D., F.R.C.S., Richard K. Reznick, M.D., M.Ed., Bryce Taylor, M.D., 
and Atul A. Gawande, M.D., M.P.H., for the Safe Surgery Saves Lives Study Group*

From the Harvard School of Public Health 
(A.B.H., T.G.W., W.R.B., A.A.G.), Massa-
chusetts General Hospital (A.B.H.), and 
Brigham and Women’s Hospital (S.R.L., 
A.A.G.) — all in Boston; University of 
California–Davis, Sacramento (T.G.W.); 
Prince Hamzah Hospital, Ministry of 
Health, Amman, Jordan (A.-H.S.B.); Uni-
versity of Washington, Seattle (E.P.D.); 
College of Medicine, University of the 
Philippines, Manila (T.H.); St. Stephen’s 
Hospital, New Delhi, India (S.J.); St. Fran-
cis Designated District Hospital, Ifakara, 
Tanzania (P.L.K.); National Institute of 
Health–University of the Philippines, 
Manila (M.C.M.L.); University of Auck-
land and Auckland City Hospital, Auck-
land, New Zealand (A.F.M.); Imperial 
College Healthcare National Health Ser-
vice Trust, London (K.M.); and University 
Health Network, University of Toronto, 
Toronto (R.K.R., B.T.). Address reprint re-
quests to Dr. Gawande at the Depart-
ment of Surgery, Brigham and Women’s 
Hospital, 75 Francis St., Boston, MA 02115, 
or at safesurgery@hsph.harvard.edu.

*Members of the Safe Surgery Saves Lives 
Study Group are listed in the Appendix.

This article (10.1056/NEJMsa0810119) was 
published at NEJM.org on January 14, 2009.

N Engl J Med 2009;360:491-9.
Copyright © 2009 Massachusetts Medical Society.

A bs tr ac t

Background
Surgery has become an integral part of global health care, with an estimated 234 
million operations performed yearly. Surgical complications are common and often 
preventable. We hypothesized that a program to implement a 19-item surgical 
safety checklist designed to improve team communication and consistency of care 
would reduce complications and deaths associated with surgery.

Methods
Between October 2007 and September 2008, eight hospitals in eight cities (Toronto, 
Canada; New Delhi, India; Amman, Jordan; Auckland, New Zealand; Manila, Phil-
ippines; Ifakara, Tanzania; London, England; and Seattle, WA) representing a vari-
ety of economic circumstances and diverse populations of patients participated in 
the World Health Organization’s Safe Surgery Saves Lives program. We prospec-
tively collected data on clinical processes and outcomes from 3733 consecutively 
enrolled patients 16 years of age or older who were undergoing noncardiac surgery. 
We subsequently collected data on 3955 consecutively enrolled patients after the 
introduction of the Surgical Safety Checklist. The primary end point was the rate of 
complications, including death, during hospitalization within the first 30 days after 
the operation.

Results
The rate of death was 1.5% before the checklist was introduced and declined to 
0.8% afterward (P = 0.003). Inpatient complications occurred in 11.0% of patients at 
baseline and in 7.0% after introduction of the checklist (P<0.001).

Conclusions
Implementation of the checklist was associated with concomitant reductions in the 
rates of death and complications among patients at least 16 years of age who were 
undergoing noncardiac surgery in a diverse group of hospitals.

The New England Journal of Medicine 
Downloaded from nejm.org at STANFORD UNIVERSITY on January 28, 2018. For personal use only. No other uses without permission. 

 Copyright © 2009 Massachusetts Medical Society. All rights reserved. 
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We hypothesized that a program to implement a 19-item surgical safety 
checklist designed to improve team communication and consistency of 
care would reduce complications and deaths associated with surgery. 

Between October 2007 and September 2008, eight hospitals in eight cities…
participated in the World Health Organization’s Safe Surgery Saves Lives 
program. 

The rate of death was 1.5% before the checklist was introduced and 
declined to 0.8% afterward (P = 0.003). Inpatient complications occurred 
in 11.0% of patients at baseline and in 7.0% after introduction of the 
checklist (P<0.001). 

Huh?



Do body-worn cameras improve policing?

• 2,224 DC Metro 
PD officers 
randomly assigned 
to wear BWC or 
not 

• Compared use of 
force and number 
of complaints 
between groups

David Yokum
Anita Ravishankar
Alexander Coppock 

Evaluating the Effects 

of Police Body-Worn Cameras: 

A Randomized Controlled Trial

Working Paper  |  October 20, 2017 

David Yokum
Anita Ravishankar
Alexander Coppock 

Evaluating the Effects 

of Police Body-Worn Cameras: 

A Randomized Controlled Trial

Working Paper  |  October 20, 2017 



Body worn cameras: no effect on policing outcomes

• “We are unable to 
reject the null 
hypotheses that BWCs 
have no effect on police 
use of force, citizen 
complaints, policing 
activity, or judicial 
outcomes.” 

• Did they just use a 
triple negative? 
• “unable to reject the 

null hypotheses”

FIG. 5. Complaints per 1,000 Officers, 90 days before and after BWC deployment.
This figure plots pre- and post-treatment complaints filed for both control and treatment group 
officers. As the chart indicates, there is no statistically significant difference between the two groups 
in either the 90-day period before or after the deployment of BWCs (which occurs on day 0). 
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FIG. 4. Uses of Force per 1,000 Officers, 90 days before and after BWC deployment.
This figure plots pre- and post-treatment uses of force for both control and treatment group officers. 
As the chart indicates, there is no statistically significant difference between the two groups in 
either the 90-day period before or after the deployment of BWCs (which occurs on day 0).
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“Null hypothesis statistical testing” (NHST)

• The most commonly used approach to perform statistical 
tests 
• Gerrig & Zimbardo (2002): NHST is the “backbone of 

psychological research” 
• Almost all researchers continue to use it 
• Many people think that it’s a bad way to do science 

• Bakan (1966): “The test of statistical significance in 
psychological research may be taken as an instance of a 
kind of essential mindlessness in the conduct of research” 

• Luce (1988): Hypothesis testing is “a wrongheaded view 
about what constitutes scientific progress”



Prepare yourself for mental gymnastics

• Hypothesis testing is 
notoriously difficult to 
understand 

• Because it’s built in a 
way that violates our 
natural intuitions!



How you might think hypothesis testing should work

• We start with a hypothesis 
• Body-worn cameras will reduce police misconduct 

• We collect some data 
• Randomized controlled trial comparing BWC to no 

BWC 
• We determine whether the data provide convincing 

evidence in favor of the hypothesis 
• What is the likelihood that the hypothesis is true, given 

the data along with everything else we know?



How null hypothesis testing actually works

• We start with a hypothesis 
• Body-worn cameras will reduce police misconduct 

• We flip it to generate a “null hypothesis”, which we assume is true 
• There is no effect of BWCs on police misconduct 

• We collect some data 
• Randomized controlled trial comparing BWC to no BWC 

• We determine how likely the data would have been, assuming that the 
hypothesis is wrong 
• If it is unlikely, then we we decide that we can “reject the null 

hypothesis “ 
• If it is likely, then we “fail to reject the null hypothesis” 

• This doesn’t mean that we decide that there is no effect!





The steps of null hypothesis testing

1. Make predictions based on your hypothesis (before 
seeing the data) 

2. Collect some data 
3. Identify null and alternative hypotheses 
4. Fit a model to the data that represents the alternative 

hypothesis and compute a test statistic 
5. Compute the probability of the observed value of that 

statistic assuming that the null hypothesis is true 
6. Assess the “statistical significance” of the result



An example hypothesis: Is physical activity related 
to body mass index?

• In the NHANES dataset, participants were asked whether 
they engage regularly in moderate or vigorous-intensity 
sports, fitness or recreational activities 

• Also measured height and weight and computed Body Mass 
Index 

• Hypothesis of interest: BMI is related to physical activity 
• Prediction: BMI should be greater for inactive vs. active 

individuals

BMI =
Weight(kg)

Height(m)2



Step 2: Collect some data

N mean 
BMI SD

Active 125 27.41 5.07

Not 
Active 125 29.64 8.83

250 individuals sampled from NHANES



Exercise: compute confidence intervals

• What are the confidence intervals for the mean for each 
group?

N mean 
BMI SD

Active 125 27.41 5.07

Not 
Active 125 29.64 8.83



Step 3: What are the “null hypothesis” (H0) and 
“alternative hypothesis” (HA)?

• H0: The baseline against which we test our hypothesis of 
interest 
• What would the data look like if there was no effect? 
• Always involves some kind of equality (=, ≤, or ≥) 

• This is compared to an “alternative hypothesis” (HA) 
• What we expect if there actually is an effect 
• Always involves some kind of inequality (≠ ,>, or <) 

• Null hypothesis testing operates under the assumption 
that the null hypothesis is true



BMI example: Null and alternative hypotheses

• HA: 
• BMI for active people is less than BMI for inactive people in the 

population 
• 𝛍active < 𝛍inactive 

• This is a “directional” hypothesis 
• Could also have a “non-directional” hypothesis 

•  𝛍active ≠ 𝛍inactive 
• H0: 

• BMI for active people is greater than or equal to BMI for inactive people in 
the population 
• 𝛍active ≥ 𝛍inactive 

• 𝛍active = 𝛍inactive (for non-directional HA)



Step 4: Fit a model to the sample data and 
compute a test statistic 

• The test statistic quantifies the amount of evidence against the 
null hypothesis, compared to the noise in the data 

• It usually has a probability distribution associated with it 
• if not, then we can often compute one using simulation

test statistic =
signal

noise
=

effect

error



BMI: What is our test statistic of interest?

• “Student’s t” statistic 
• Measures the difference of means between two groups 
• Distributed according to a t distribution when the 

sample size is small and the population SD is unknown
Statistician William 
Sealy Gosset, AKA 

“Student"

: sample mean

: sample size

: sample variance

t =
X̄1 � X̄2q
S2
1

N1
+ S2

2
N2

t =
X̄1 � X̄2q
S2
1

N1
+ S2

2
N2t =

X̄1 � X̄2q
S2
1

N1
+ S2

2
N2

t =
X̄1 � X̄2q
S2
1

N1
+ S2

2
N2



The t distribution vs. the normal (Z) distribution



Step 5: Determine the probability of the test 
statistic under the null hypothesis

• How likely is it that we would see an effect of this size if 
there really is no effect? 

• To do this, we need to know the distribution of the 
statistic under the null hypothesis 

• We can then ask how likely our observed value is within 
that distribution 

• Two ways to determine this: 
• Theoretical distribution 
• Null distribution obtained using simulation



A simple example: Is this coin fair?

• Do an experiment: 100 flips 
• Statistic of interest: 70 heads 
• H0: p(heads)=0.5 
• HA: p(heads) ≠ 0.5 
• How likely are we to observe 70 heads on 100 flips if H0 is true?

P (X  k) =
kX

i=0

✓
N

k

◆
pi(1� p)n�ibinomial distribution

P(X ≤ 69|p=0.5) = 0.99996 
P(X ≥ 70|p=0.5) = 1 - 0.99996 = 0.00004 



Using random sampling to generate an empirical 
null distribution

• Draw random samples from a binomial distribution (using rbinom()) 
• Compare them to the observed data

P(X ≥ 70|p=0.5) = 3/50000 = 0.00006



BMI example

• What would the t statistic look like if there was really no 
difference in BMI between active and inactive people?



Randomization
• We can make the null hypothesis true (on average) by 

randomly reordering group membership

Team Squat
Football 325
Football 290
Football 290
Football 305
Football 370

XC 165
XC 180
XC 215
XC 175
XC 125

t = 6.92 
df = 8,  
p(t8≥6.92) = 0.0001



Randomization

Team Squat
Football 325
Football 290

XC 290
XC 305

Football 370
Football 165
Football 180

XC 215
XC 175
XC 125

t = 0.83 
df = 8 
p(t8≥0.83) = 0.43

• We can make the null hypothesis true (on average) by 
randomly reordering group membership



Randomization

Team Squat
XC 325
XC 290

Football 290
Football 305
Football 370

XC 165
Football 180
Football 215

XC 175
XC 125

t = 1.09 
df = 8 
p(t8≥1.09) = 0.30

• We can make the null hypothesis true (on average) by 
randomly reordering group membership



• Scramble 10,000 times to get distribution of t values 
under null hypothesis

P(trandom≥tobserved)=.0021

What 
happened 

here?

there are  
3,628,800 
possible 

permutations of 
10 items



BMI example: randomization

• If there is no difference 
between groups, then 
the result should be no 
different from what we 
see if activity levels are 
randomly shuffled 
between people

Largest difference in 2500 random shuffles: 3.21 
Observed difference in actual data: 2.22 

Number of shuffles with t ≥ 2.22: 16 
p(t ≥ 2.22| H0) = 16/2500 = 0.0064



The t distribution vs permutation distribution

2500 shuffles



With enough random shuffles, the nonparametric 
and theoretical distributions can become very similar

50000 shuffles



Performing a t test in R

ttestResult = t.test(BMI~PhysActive,
data=NHANES_sample,var.equal=TRUE,
alternative='greater')

“formula notation: y ~ x” 

BMI ~ PhysActive
“Does BMI differ as a 

function of the different 
values of PhysActive?



BMI example: dissecting the parametric test in R
>ttestResult <- t.test(BMI~PhysActive,data=NHANES_sample,
    var.equal=TRUE,alternative='greater')



BMI example: parametric test in R

Two Sample t-test

data:  BMI by PhysActive
t = 2.4452, df = 248, p-value = 0.007587
alternative hypothesis: true difference in means is 
greater than 0
95 percent confidence interval:
 0.7230215       Inf
sample estimates:
mean of x mean of y 
 29.63752  27.41136 

Directional 
alternative 
hypothesis

>ttestResult=t.test(BMI~PhysActive,data=NHANES_sample,
    var.equal=TRUE,alternative='greater')



BMI example: parametric test in R

Two Sample t-test

data:  BMI by PhysActive
t = 2.4452, df = 248, p-value = 0.007587
alternative hypothesis: true difference in means is 
greater than 0
95 percent confidence interval:
 0.7230215       Inf
sample estimates:
mean of x mean of y 
 29.63752  27.41136 

t statistic 
computed on 

observed sample

>ttestResult=t.test(BMI~PhysActive,data=NHANES_sample,
    var.equal=TRUE,alternative='greater')



BMI example: parametric test in R

Two Sample t-test

data:  BMI by PhysActive
t = 2.4452, df = 248, p-value = 0.007587
alternative hypothesis: true difference in means is 
greater than 0
95 percent confidence interval:
 0.7230215       Inf
sample estimates:
mean of x mean of y 
 29.63752  27.41136 

N - 2 degrees 
of freedom 

(because we are 
estimating two 

parameters)

>ttestResult=t.test(BMI~PhysActive,data=NHANES_sample,
    var.equal=TRUE,alternative='greater')



BMI example: parametric test in R

Two Sample t-test

data:  BMI by PhysActive
t = 2.4452, df = 248, p-value = 0.007587
alternative hypothesis: true difference in means is 
greater than 0
95 percent confidence interval:
 0.7230215       Inf
sample estimates:
mean of x mean of y 
 29.63752  27.41136 

probability of  
t ≥ 2.44 for 

t(248) 
in R: 

1 - pt(2.4452,248)

>ttestResult=t.test(BMI~PhysActive,data=NHANES_sample,
    var.equal=TRUE,alternative='greater')





One-tailed vs two-tailed tests

• Directional test: 
• p-value = 1 - p(tobserved ≥ t248)



One-tailed vs two-tailed tests

• Two-tailed (non-directional test) 
• p-value = 1 - p(tobserved ≥ t248) + p(tobserved ≤ t248)



Two-tailed results

Two Sample t-test

data:  BMI by PhysActive
t = 2.4452, df = 248, p-value = 0.01517
alternative hypothesis: true difference in means is not equal 
to 0
95 percent confidence interval:
 0.4329999 4.0193201
sample estimates:
mean of x mean of y 
 29.63752  27.41136 

p-value is twice 
as large for two-
tailed test versus 
one-tailed test: 
data are less 
surprising!

ttestResult = t.test(BMI~PhysActive,data=NHANES_sample,var.equal=TRUE,
    alternative='two.sided')



Step 6: Assess the “statistical significance” of the 
result

• What does “statistical significance” mean? 
• How much evidence against the null hypothesis do we 

require before rejecting it?


