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This time

• Building models to describe data 
• Central tendency 
• Dispersion and variability



What is a “model”?



Models simplify the world for us



The basic statistical model

outcome = model + error

what we  
actually 
observe 

(the data)

what we  
expect to 
observe 

(our prediction)

difference  
between expected 

and observed

The model is should be much simpler than the thing it is 
modeling!



A simple example

• What is the height of children in the NHANES sample?



NHANES <- NHANES %>%
mutate(isChild = Age<18)

NHANES_child <- NHANES %>%
subset(subset=isChild & Height!='NA')

ggplot(data=NHANES_child,aes(Height)) + 
  geom_histogram(bins=100)



What is the simplest model we can image?

• One guess: what about the 
most common value in the 
dataset (the mode)? 
• height(i) = 166.5 + error(i) 
• Summarizes 2,223 data 

points in terms of a single 
number 

• How well does that describe 
the data? 

• Computing the error: 
• error = outcome - model



error <- NHANES_child$Height - 166.5

ggplot(NULL,aes(error)) + 
  geom_histogram(bins=100)

average error: -27.94 inches



A better model?

• We would like for our 
model to have zero error, 
on average 

• If we use the mean of the 
data as our model, then 
that will be the case
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Sum of errors from the mean is zero

x error

3 -3

5 -1

6 0

7 1

9 3

sum=0

d <- c(3,5,6,7,9)
mean(d)
## [1] 6
errors=d-mean(d)
print(errors)
## [1] -3 -1  0  1  3
print(sum(errors))
## [1] 0



error_mean <- NHANES_child$Height - mean(NHANES_child$Height)

ggplot(NULL,aes(error_mean)) + 
  geom_histogram(bins=100) + xlim(-60,60)

average error: -0.000000 inches



Building an even better model

• The average error for mean is zero 
• But there are still errors, sometimes positive and sometimes negative 

• The “best” estimate is one that minimizes errors overall (both positive 
and negative) 

• We can quantify the total error by squaring the errors and adding them 
up

sumof squared errors =
nX

i=1

(xi � x̂)2

model prediction : x̂ = mean(x) =

Pn
i=1 xi

n



mean squared error: 720.05

print(paste(‘average squared error:',mean(error_mean**2)))

This tells us that while on average we make no error, for any 
individual we could actually make quite a big error (~27 
inches2 on average). 


Could we make the model any better? What else do we 
know about these individuals that might help us better 
estimate their height?

We take the mean of the squared errors by dividing SSE by 
the number of values, and then take the square root:

mean squared error =
SSE

N



What about their age? Let’s plot height versus age and see how they are related.

ggplot(NHANES_child,aes(x=Age,y=Height)) +
  geom_point(position=‘jitter’) +
  geom_smooth()



# find the best fitting model to predict height given age
model_age <- lm(Height ~ Age, data = NHANES_child)

# the predict() function uses the fitted model to predict values 
for each person
predicted_age <- predict(model_age)

error_age <- NHANES_child$Height - predicted_age
sprintf('average squared error: %f inches',mean(error_age**2))

mean squared error: 69.61 inches



What else do we know?

• What other variables might be related to height?



ggplot(NHANES_child,aes(x=Age,y=Height)) +
  geom_point(aes(colour = factor(Gender)),position = "jitter",alpha=0.2) +
  geom_smooth(aes(group=factor(Gender),colour = factor(Gender)))



model_age_gender <- lm(Height ~ Age + Gender, 
               data=NHANES_child)

predicted_age_gender <- predict(model_age_gender)
error_age_gender <- NHANES_child$Height - predicted_age_gender

model: height = 84.33 + 5.47*Age + 3.57*Gender

mean squared error: 66.42 inches



error_df <- data.frame(error=c(mean(error**2),mean(error_mean**2),
                            mean(error_age**2),mean(error_age_gender**2)))
row.names(error_df) <- c(‘mode','mean','age','age+gender')
error_df$RMSE <- sqrt(error_df$error)
ggplot(error_df,aes(x=row.names(error_df),y=RMSE)) + 
  geom_col() +ylab('root mean squared error') + xlab('Model') +
  scale_x_discrete(limits = c('mode','mean','age','age+gender'))





What makes a model “good”?

• Describes our dataset well 
• the error for the fitted data is low 

• Generalizes to other data 
• the error for a new dataset is low 

• These two are often in conflict!



Sources of error:

• Remember the basic model:  
• outcome = model + error 

• Error can come from two sources: 
• The model is incorrect 
• The measurements have random error (“noise”)



low error: 
model is correct 

noise is low

High error: 
model is correct 

noise is high

High error: 
model is wrong 

noise is low

Error can come 
from two sources: 
• incorrect model 
• noisy data



Overfitting

• A more complex model 
will always fit the data 
better 
• The model fits the 

underlying signal as 
well as the random 
noise in the data 

• A simpler model often 
does a better job of 
explaining a new sample 
from the same group

Original sample
SSE=4369 
SSE=1026

New sample
SSE=10615 
SSE=18505



The principle of parsimony

• “It can scarcely be denied that the supreme 
goal of all theory is to make the irreducible 
basic elements as simple and as few as 
possible without having to surrender the 
adequate representation of a single datum of 
experience.” 
• Albert Einstein, 1933 

• Paraphrased as “everything should be as 
simple as it can be, but not simpler”



The simplest model: Central tendency

• What is the most typical value?



Mean (aka average)

X̄ =

Pn
i=1 xi

n

sample mean

µ =

Pn
i=1 xi

N

population mean

same formula, different symbols



The mean as a balancing point



The mean is the “best” estimate

• The mean is the value that minimizes the sum of squared errors 
• This is the statistical definition of being the “best” estimate 
• We proved this earlier 

• But we can also demonstrate it using R, which you will do in 
your next problem set…

SSE =
nX

i=1

(xi � x̂)2



Estimating the mean accurately can require lots of data

• Data: Height of children 
from NHANES (2,223 
children) 

• Mean height: 138.5 in 
• What happens if we 

take smaller samples 
from this group? 
• start with a sample 

of size 10 and then 
increase by 10 up to 
1000



One not-so-useful feature of the mean

people income

Joe 48000

Karen 64000

Mark 58000

Andrea 72000

Pat 66000

mean income: $61,600 mean income: $10,848,400

people income

Joe 48000

Karen 64000

Mark 58000

Andrea 72000

Beyonce 54,000,000



Breakouts!

• Come up with an example of a statistic that is relevant to public 
policy and that might be contaminated by outliers 

• What effect could this have on policy decisions? 
• How might you address the problem?



Median

• When the scores are ordered from smallest to largest, the median is 
the middle score

original: 8  6  3 14 12  7  6  4  9

median = 7

 sorted: 3  4  6  6  7  8  9 12 14{{



Median

• When the scores are ordered from smallest to largest, the median is the 
middle score 
• When there is an even number of scores, the median is the average 

between the middle two scores

original: 8  6  3 14 12  7  6  4  9 13

median = 7.5

{{ sorted: 3  4  6  6  7  8  9 12 13 14



Median as the 50th percentile
original: 8  6  3 12  7  6  4  9 13



The median minimizes absolute error

• The mean minimizes the sum of 
squared errors 

• The median minimizes the sum of 
absolute errors SAE =

nX

i=1

|xi � x̂|

SSE =
nX

i=1

(xi � x̂)2

Why do you think that matters?



The median is less sensitive to outliers

people income

Joe 48000

Karen 64000

Mark 58000

Andrea 72000

Pat 66000

mean income: $61,600 mean income: $10,848,400

median income: $64,000 median income: $64,000

people income

Joe 48000

Karen 64000

Mark 58000

Andrea 72000

Beyonce 54,000,000



Why would we ever use the mean instead of the 
median?

• The mean is the “best” estimator 
• It bounces around less from sample to sample than any other 

estimator 
• More on this later 

• But the median is more robust 
• Less likely to be influenced by outliers 

• Statistics is all about tradeoffs…



Mode

• What is the most common value in the dataset?



Bimodal distributions

• There is not necessarily a single peak in the distribution

https://commons.wikimedia.org/wiki/File:BimodalAnts.png

Weaver worker ants
“minor workers”

“major 
workers”

https://termitesandants.blogspot.com/2010/04/oecophylla-smaragdina.html

Minor worker 
grooming a major worker



The fit of the sample mean: Variance and standard 
deviation

x error error^2

3 -3 9

5 -1 1

6 0 0

7 1 1

9 3 9

SSE: 20 

variance (s2)=20/4=5 

SD=sqrt(5)=2.2

variance =
SSE

n� 1
=

Pn
i=1(xi � X̄)2

n� 1

SD =
p
variance

mean=6



Why we use N-1 when estimating the variance 
from a sample

• The variance of the population (𝜎2) is 
defined as: 
• where 𝜇 is the population mean 

• However, if we use this same equation 
with samples from the population, it is 
going to be biased on average - that is, 
we expect its value to be slightly different 
from the population value: 

• In order to get an unbiased estimate of 
the population variance from the sample 
data, we need to correct it:

�2 =

Pn
i=1(xi � µ)2

N

s2 =
n

n� 1
�2

s2 =

Pn
i=1(xi � X̄)2

n� 1



Degrees of freedom

• How many values are free to vary once the statistic is computed?

x

3

5

6

7

9

mean=6

x

3

5

6

7

?

3 + 5 + 6 + 7 + x

5
= 6

x = 6 ⇤ 5� 21 = 9

Once the mean has been computed, 
we only have n-1 degrees of freedom



Robust measures of dispersion: interquartile range

• Quartiles: 
• 25th, 50th, 

and 75th 
percentiles

d=seq(1,9)=c(1,2,3,4,5,6,7,8,9)



Interquartile range on NHANES height

• IQR contains 50% 
of values 

• vs.1 standard 
deviation, which 
contains ~34% of 
values 

• If data are normally 
distributed: 
• IQR ~ SD*1.349

Med
ian

Qua
rtil

e 3

Qua
rtil

e 1

}

IQR



Box plots and IQR

} IQR



Effect of outliers on estimates of dispersion

people income

Joe 48000

Karen 64000

Mark 58000

Andrea 72000

Pat 66000

std deviation: $9,099 std deviation: $24,122,479

interquartile range: $8,000 interquartile range: $14,000

people income

Joe 48000

Karen 64000

Mark 58000

Andrea 72000

Beyonce 54,000,000



Recap

• The basic statistical model: outcome = model + error 
• A better fitting model is better, up to a point 
• The simplest model is the central tendency of the data 
• Measures of central tendency include the mean, median, and mode 
• The fit of the central tendency is defined as the deviation


