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News

• Probability Review - Tuesday 14th, 1:30PM PDT 
• Problems already available on the course website 
• Try to solve them before the review!



News

• What is a probability? 
• Rules of probability 
• Probability distributions

Last time

• Probability Review - Tuesday 14th, 1:30PM PDT 
• Practice Problems are available on the course website 
• Try to solve them before the review!



This time

• The normal probability distribution 
• Conditional probability 
• Bayes’ rule



The normal distribution

•                    



The normal distribution

• Normal table: 
• z-score 
• Height 
• Area
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The normal distribution

• Normal table: 
• z-score 
• Height 
• Area 

• Learning Goals:  
• derive percentiles from the table 
• understand why z-scores are useful 

• https://shiny.rit.albany.edu/stat/stdnormal/ 
• More on this in Tuesday’s review!

https://shiny.rit.albany.edu/stat/stdnormal/


Conditional probability

• Simple probabilities: 
• What is the likelihood that a US voter was a 

Republican in 2016? 
• p(Republican) = 0.44 

• What is the likelihood that a US voter voted for Donald 
Trump in the 2016 Presidential Election? 
• P(TrumpVoter) = 0.46



Conditional probability

• Simple probabilities: 
• What is the likelihood that a US voter was a 

Republican in 2016? 
• p(Republican) = 0.44 

• What is the likelihood that a US voter voted for Donald 
Trump in the 2016 Presidential Election? 
• P(TrumpVoter) = 0.46 

• Conditional probability: Probability of one event, given 
that some other has occurred 
• P(TrumpVoter|Republican) = ?



Population 
(registered 

 Democrats or 
Republicans 

who voted for 
either DJT 
or HRC)

p(R)

p(D)

p(DJT|R)

p(HRC|R)

p(DJT|D)

p(HRC|D)

Tree 
diagram



Computing conditional probability

P (TrumpV oter|Republican) =
P (TrumpV oter \Republican)

P (Republican)

P (A|B) =
P (A \B)

P (B)

Limits the calculation to the set of B events



Another view on conditional probability

P(D)=9/18=0.5 
P(R) = 1 - P(D) = 0.5

P(DJT)=10/18=0.55 
P(HRC) = 1 - P(DJT) = 0.45



Another view on conditional probability

P(DJT)=10/18=0.55 
P(DJT|R) = ?

P(DJT|R) = 9/9 = 1.0 



What does “independent” mean to you?



Statistical Independence

• Knowing about one thing does not tell us anything about 
the other 

• Knowing the value of B doesn’t give us any additional 
information about the value of A 

• They are statistically unrelated 
• This has a very different meaning from the common 

language meaning of “independence”

P (A|B) = P (A)



Example: The proposed “independent” state of Jefferson

P(CA)=0.986

Let’s suppose they succeeded 
For a current resident of CA:

P(JF)=0.014

P(CA|JF)=0

political independence = 
statistical dependence!

In general, mutually independent  
events will be statistically dependent 

(assuming p>0)



• NHANES is a program of studies by the CDC designed to 
assess the health and nutritional status of adults and children in 
the United States. The survey is unique in that it combines 
interviews and physical examinations. 

• The survey examines a nationally representative sample of 
about 5,000 persons each year. 

• The NHANES interview includes demographic, socioeconomic, 
dietary, and health-related questions. The examination 
component consists of medical, dental, and physiological 
measurements, as well as laboratory tests administered by 
highly trained medical personnel. 

• Available in R: 
• library(NHANES)



An example: Are physical activity and mental health 
independent in NHANES?

PhysActive
Participant does moderate or vigorous-intensity sports, fitness or 
recreational activities (Yes or No). 

DaysMentHlthBad
Self-reported number of days participant's mental health was not good 
out of the past 30 days. 

NHANES_adult = NHANES_adult %>%   
   mutate(badMentalHealth=DaysMentHlthBad>7)





An example: Are physical activity and mental health 
independent in NHANES?

NHANES_adult %>%
 summarize(badMentalHealth=mean(badMentalHealth))

P(badMentalHealth|~Active) 0.200

P(badMentalHealth|Active) 0.132

P(badMentalHealth)

0.164

NHANES_adult %>% 
  group_by(PhysActive) %>%
  summarize(badMentalHealth=mean(badMentalHealth))



Physical activity is good - let’s do some!



Why independence matters

https://www.ted.com/talks/peter_donnelly_shows_how_stats_fool_juries



Reversing a conditional probability

• We known P(A|B) 
• How do we find out what P(B|A) is? 

• Why would this ever be useful?



Airport screening

we know: P(positive test | explosives) 
we want to know: P(explosives| positive test)



Medical testing

• Prostate specific antigen (PSA) 
• Tests can be characterized by two 

factors: 
• Sensitivity:  

• P(positive test | disease) 
• ~80% 

• Specificity: 
• 1 - P(positive test| no disease) 
• ~70%

https://emedicine.medscape.com/article/457394-overview



Table of possible outcomes

Has disease Does not have 
disease

Positive test “hit”

P(D∩T)

“false alarm”

P(~D∩T)

Negative test “miss”

P(D∩~T)

“true negative”

P(~D∩~T)

Sensitivity: P(positive test | has disease) 
How do we compute it? 

Sensitivity = hits / (hits + misses)



Table of possible outcomes

Specificity: P(negative test | no disease) 
How do we compute it? 

Specificity = true negatives/(false alarms + true negatives)

Has disease Does not have 
disease

Positive test “hit”

P(D∩T)

“false alarm”

P(~D∩T)

Negative test “miss”

P(D∩~T)

“true negative”

P(~D∩~T)





Interpreting test results

• A person receives a positive test result 
• We know the likelihood of a positive test given the 

disease 
• Sensitivity of the test: P(positive test|disease) 

• But what we really want to know is: is the likelihood that 
the person actually has the disease? 
• P(disease | positive test) 

• How do we compute this “inverse probability”?



Bayes’ rule

• A way to invert a conditional probability 

• In the context of science:

P (A|B) =
P (B|A) ⇤ P (A)

P (B)

P (hypothesis|data) = P (data|hypothesis)P (hypothesis)

P (data)



Deriving Bayes’ rule

• Remember the definition of 
conditional probability: 

• Rearrange to get the rule for 
computing joint probability of 
A and B: 

• So if we want to compute 
P(B|A):

P (A|B) =
P (A \B)

P (B)

P (A \B) = P (A|B)P (B)

P (B|A) =
P (A \B)

P (A)
=

P (A|B)P (B)

P (A)



Bayes’ rule

• For two outcomes, we can express it in a slightly clearer 
way using the sum rule for probabilities:

P (B) = P (B|A) ⇤ P (A) + P (B| ⇠ A) ⇤ P (⇠ A)

P (A|B) =
P (B|A) ⇤ P (A)

P (B|A) ⇤ P (A) + P (B| ⇠ A) ⇤ P (⇠ A)

P (A|B) =
P (B|A) ⇤ P (A)

P (B)



60 year old male: P(disease in next 10 years)=0.058 
Sensitivity: P(T|D)=0.8 
Specificity: P(~T|~D)=0.7

https://www.cdc.gov/cancer/prostate/statistics/age.htm

P(D)=0.058

P(~D)=0.942

P(T|D)=0.8

P(~T|D)=0.2

P(~T|~D)=0.7

P(T|~D)=0.3

P(D|T)= 0.8*0.058
0.8*0.058 + 0.3*0.942

= 0.14



What do these probabilities mean?

• The person either has a disease or 
doesn’t 

• How should we interpret this 
probability? 

• Objective probability 
• long-run relative frequency that the 

hypothesis is true 
• Subjective probability 

• our degree of belief in the 
hypothesis 

• how plausible is the hypothesis?



What do these probabilities mean?

• The person either has a disease or 
doesn’t 

• How should we interpret this 
probability? 

• Objective probability 
• long-run relative frequency that the 

hypothesis is true 
• Subjective probability 

• our degree of belief in the 
hypothesis 

• how plausible is the hypothesis?

John Maynard 
Keynes:  

“In the long run, 
we are all dead”



Statistics as learning from data

Knowledge

Hypothesis H

Data D
P(H)

P(H|D)



Statistics as learning from data

• We almost always start with 
some prior knowledge, 
which leads us to test a 
hypothesis 
• Perform the PSA test 

• We generally have some idea 
of what to expect 
• e.g. P(disease in next 10 

years)=0.058 
• We update our knowledge 

based on the data using 
Bayes’ rule  
• P(disease|test result)=0.14

Knowledge

Hypothesis H

Data D
P(H)

P(H|D)



Dissecting Bayes’ rule

P (A|B) =
P (B|A)

P (B)
⇤ P (A)
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Dissecting Bayes’ rule

prior: how likely did we  
think A was before we  

collected data?

P (A|B) =
P (B|A)

P (B)
⇤ P (A)

posterior: how likely do we  
think A is after we  
collected data?

relative likelihood of the data given A, 
versus the overall likelihood  

of the data



Odds

• A ratio expressing the likelihood of something happening 
relative to not happening 

• 1/1: “even odds” 
• Example: What are the odds of rolling a six using a one-

sided die?

odds =
P (A)

P (⇠ A)

odds in favor =
1
6
5
6

=
1

5
odds against =

5
6
1
6

=
5

1



Bayesian odds

prior odds =
0.058

1� 0.058
= 0.061prior odds =

P (A)

P (⇠ A)

posterior odds =
P (A|B)

P (⇠ A|B)
posterior odds =

0.14

0.86
= 0.16

likelihood ratio =
posterior odds

prior odds
= 2.62



Summary

• Conditional probabilities allow to express the likelihood of 
some event, given some other event 

• The statistical concept of independence revolves around 
whether one variable provides information about the 
value of another 

• Bayes’ theorem provides us with the means to invert 
conditional probabilities


