Session 3: Summarizing data

Stats 60/Psych 10
Ismael Lemhadri
Summer 2020

This time

- Summarizing data using frequency distributions
- Graphically representing frequency distributions
- Idealized distributions
- Normal distribution
- Long-tailed distributions

Why do we want to summarize data?

Objections to aggregating data

- We are throwing away information!
- Order of observations
- Individual characteristics of observations
- Context of each
 observation

Counter-objections

- One of the central aspects of knowledge is generalization
- Looking past the details to see a deeper truth
"To think is to forget a difference, to generalize, to abstract. In the overly replete world of Funes, there were nothing but details."

Counter-objections

- One of the central aspects of knowledge is generalization
- Looking past the details to see a deeper truth

Simplest data aggregation: The table

A reconstruction of a ca. 3000 BCE Sumerian tablet, with modern numbers added. (Reconstruction by Robert K. Englund; from Englund 1998, 63)

Stigler, Stephen M.. The Seven Pillars of Statistical Wisdom (p. 25).

Describing data using tables

nominal variable:

what is your major?

Major

psychology	33
undecided	32
product design	13
biology	9
science, technology, and society	9
international relations	8
political science	6
english	4
linguistics	3
symbolic systems	3
communications	2
computer science	2
east asian studies	2
human biology	2

Describing data using tables

- Ordinal variable
- How much do you expect to like this course?

I expect to hate it intensely.
expect it to be my favorite course ever.

Response	Frequency
1	6
2	14
3	21
4	48
5	53
6	11
7	3

Absolute vs relative frequencies

$$
\text { relative frequency }=\frac{\text { absolute frequency }}{\text { total number of observations }}
$$

Response	Absolute Frequency	Relative Frequency
1	6	0.03846154
2	14	0.08974359
3	21	0.13461538
4	48	0.30769231
5	53	0.33974359
6	11	0.07051282
7	3	0.01923077

Why might you prefer relative (vs absolute) frequency?

Percentages vs. Proportions

$$
\text { percentage }=100 * \text { proportion }
$$

Response	Frequency	Relative Frequency	Percentage
1	6	0.03846154	3.846154
2	14	0.08974359	8.974359
3	21	0.13461538	13.461538
4	48	0.30769231	30.769231
5	53	0.33974359	33.974359
6	11	0.07051282	7.051282
7	3	0.01923077	1.923077

Cumulative representations

$$
\text { cumulative frequency }_{n}=\sum_{j=1}^{n} \text { frequency }_{j}
$$

What is that thing?

Summation

stopping point
element being summed index of summation
starting point

1	1	2	3	3	3	3	4	4	4

Value	Frequency (f)	Cumulative frequency
1		$\sum_{j=1}^{1} f_{j}=$
2		$\sum_{j=1}^{2} f_{j}=$
3		$\sum_{j=1}^{3} f_{j}=$
4		$\sum_{j=1}^{4} f_{j}=$

Computing cumulative frequency

$$
\text { cumulative frequency }_{n}=\sum_{j=1}^{n} \text { frequency }_{j}
$$

Response	Frequency	Relative Frequency	Cumulative Frequency
1	6	0.03846154	6
2	14	0.08974359	20
3	21	0.13461538	41
4	48	0.30769231	89
5	53	0.33974359	142
6	11	0.07051282	153
7	3	0.01923077	156

Computing frequency distributions in R

\# create a list of the data from the lecture slides df <- data.frame(value=c(1, 1, 2, 3, 3, 3, 3, 4, 4, 4))
\# first compute the frequency distribution using the table() function
freqdist <- table(df)
print(freqdist)
\#\# df
\#\# 11234
\#\# 2143

Stem and leaf plot - for small datasets only!

```
dfStemLeaf <-
data.frame(value=c(8,8,9,10,12,12,14,18,21,22,23,25,25,30,32,51)
)
stem(dfStemLeaf$value)
```

The decimal point is 1 digit(s) to the right of the

0	889
1	02248
2	12355
3	02
4	
5	1

Plotting a histogram

1	1	2	3	3	3	3	4	4	4

ggplot(df, aes(value)) +
geom_histogram(binwidth=1,fill='blue')

Draw a frequency polygon for the frequency distribution ggplot(df, aes(value)) + geom_histogram(binwidth=1,fill='blue') + geom_freqpoly(binwidth=1)

For this stem/leaf plot, recreate the raw data and select the

correct answer

	$9,4,6,6,8,2,4,5,7,7$		
0	1	9	$9,14,16,16,18,22$,
1	1	4	$24,25,27,27$
1	1	668	$9,14,1668,224,2577$
2	1	24	
2	1	577	

Frequency versus density

- Density sums to 1 across all entries
- each data point contributes $1 / n$ to density

Which of the following raw datasets could have plausibly generated the density plot below? You may choose more than one.

Compute the cumulative distribution

```
cumulative_freq <- cumsum(table(df))
print(cumulative_freq)
## 1 1 2 3 4
## 2 
```

Plot the cumulative density.

```
ggplot(df, aes(value)) + stat_ecdf() + ylab('Cumulative
``` density')


\section*{Summarizing a more realistic dataset: NHANES}

The decimal point is 1 digit(s) to the right of the 1

\section*{0 | 889}
1102248
2 | 12355
88:1 C Chunk 9 =
R Markdown \(=\)
Console
Terminal

\section*{Environment History Connections}

-

Glabal Environmene -
\begin{tabular}{|c|c|c|c|c|}
\hline Name - & Type & Length & Size & Value \\
\hline df & data.fr & 1 & 800 B & 10 obs. of 1 vari. \\
\hline dfHiCorr & data.fi & 3 & 3.9 KB & 128 obs. of 3 var. \\
\hline dfLowCorr & data.fr & 3 & 3.9 KB & 128 obs. of 3 var. \\
\hline f & igraph & 10 & 4.1 KB & List of 10 \\
\hline foo & data.fr & 3 & 24.3 KB & 1000 obs. of 3 va . \\
\hline freqdist & table & 4 & 1 KB & 'table' int [1:4(1d).. \\
\hline generateData & function & 1 & 8.8 KB & function \((n, \pi u=\square\) \\
\hline generateInc... & function & 1 & 16.1 KB & function (\(n, r\) m \(=\square\) \\
\hline
\end{tabular}

Files Plots Packages Help Viewer

R: NHANES 2009-2012 with adjusted weighting * Find in Topic
Age
Age in years at screening of study participant. Nole: Subjects BO years or older were recorced as 80 .

\section*{AgeDecace}

Categorical variable derived from age with levels 0-9, 10-19, ... 70+

Agelvonths
Age in months at screening of study participant. Reported for participants aged 0 to 79 years for 2009 to 2010 data Reported for participants aged 0 to 2 years for 2011 to 2012 data.

Race1
Reported race of study participant: Mexican, Hispanic, White,
Black, or Other.

\section*{Why would they do that?}

NHANES Height (complete sample)
-Why is there a long tail on the left?

\section*{The distribution of adult height in NHANES data}

\section*{Grouped frequency distributions}

\section*{Why is this so jagged looking?}

Is this better?

\section*{Height 173.1173 .2173 .3173 .4 \\ \(\begin{array}{lllll}\text { Freq } & 38 & 52 & 29 & 22\end{array}\)}

\section*{Choosing an interval width}
\[
\text { interval width }=\frac{\text { range of scores }}{\text { number of intervals }}
\]
- There is no single rule for how to choose this

\section*{Cumulative distributions}

\section*{Group exercise}
- Break into groups of \(\sim 4\)
- Draw your best guess as to the shape of the frequency distributions (histograms) of the following variables for adults in the NHANES dataset:
- Body weight (in pounds)
- Self-reported number of days participant's physical health was not good out of the past 30 days.
- Don't look at the actual data!

NHANES adult weight data

\section*{NHANES physical health self-report data}

\section*{Why is this histogram so weird?}

Days of drinking in a year

NHANES Help:
AlcoholYear:
Estimated number of days over the past year that participant drank alcoholic beverages. Reported for participants aged 18 years or older.

\section*{The importance of knowing where the data came from}

ALQ. 120 In the past 12 months, how often did \{you/SP\} drink any type of alcoholic beverage?
Q/U
PROBE: How many days per week, per month, or per year did \{you/SP\} drink?
ENTER '0' FOR NEVER.

HARD EDIT: Range - 1-7 days/week, 1-32 days/month, 1-366 days/year CAPI INSTRUCTION: IF QUANTITY CODED ‘0', GO TO BOX 1.

REFUSED... 777 (BOX 1)
DON'T KNOW ... 999 (BOX 1)

ENTER UNIT

WEEK .. 1
MONTH.. 2
YEAR .. 3
https://wwwn.cdc.gov/nchs/data/nhanes/2015-2016/questionnaires/ALQ_CAPI_I.pdf

\section*{Idealized representations of distributions}
- Certain types of distributions are common in real data
- We can describe the data using one of these idealized distributions

\section*{The distribution of adult height in NHANES data}

The normal distribution of heights
\[
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
\]
\(\boldsymbol{\mu}:\) mean (168.8)
\(\boldsymbol{\sigma}\) : standard deviation (10.1)

\author{
easy to compute in \(R\) : dnorm()
}

\section*{Skewness: One tail is longer than the other}
- Often occurs for counts or time measurements
- why?

Average wait times for security at SFO Terminal A (Jan-Oct 2017)

https://awt.cbp.gov/

\section*{Social networks}
- How do you think the number of friends in a social network is distributed?
- https://snap.stanford.edu/data/egonets-Facebook.html
- Friendship data for 4039 people

The average individual (out of 4039 people in the dataset) has 24 friends on Facebook. how many friends (to the nearest number) do you think the person with the most friends has
50
100
250
500
750
1000
2000
4000

\section*{The long tail of friendship}

\section*{Income distribution in the US}

Sample of 126K households from IPUMS CPS

\section*{Plotting percentiles}

\section*{Percentile plots?}
- What would this plot look like if everyone made the same income?
- What would it look like if income was randomly assigned between \(\$ 10,000\) and \(\$ 100,000\) ?

\section*{Long tailed distributions - the new normal?}
- Normal(ish) distributions occur when many different factors mix together to generate a variable
- Height
- Waiting times
- Extremely long-tailed distributions occur when the rich get richer
- Many different types of real-world networks
- social media, power grid, brain connectivity
- "small world networks"

\section*{Recap}
- We can summarize data using frequency distributions
- There are a few idealized distributions that can describe much of the data in the world
- Normal distributions: when many different factors come together to determine a variable
- Long-tailed distributions: when the rich get richer```

