Session 2: Visualizing data

Stats 60/Psych 10 Ismael Lemhadri Summer 2020

This time

- Visualizing data
 - How to spot bad graphs
 - How to create good graphs

How better data visualization could have saved 7 lives

January 28, 1986

What happened?

The shuttle consists of an *orbiter* (which carries the crew and has powerful engines in the back), a large liquid-fuel *tank* for the orbiter engines, and 2 solid-fuel *booster rockets* mounted on the sides of the central tank. Segments of the booster rockets are shipped to the launch site, where

they are assembled to make the solid-fuel rockets. Where these segments mate, each joint is sealed by two rubber O-rings as shown above. In the case of the Challenger accident, one of these joints leaked, and a torchlike flame burned through the side of the booster rocket.

Tufte, 1997

https://www.slideshare.net/catalyst00/truth-lies-and-orings-inside-the-space-shuttle-challenger-disaster http://www.aerospaceweb.org/question/investigations/q0122.shtml

What does this have to do with data visualization?

- Temperatures were forecast to be very cold on Jan 28
- Engineers from the rocket contractor Morton Thiokol presented 13 charts in an attempt to convince NASA to postpone the launch due to concerns about the O-rings failing at low temperature

They failed

Ineffective presentation of data

BLOW BY HISTORY		HISTORY	OF O	-RING TEN	MPERATURES	
SRM-15 WORST BLOW-BY		(DEGREES-F)				
0 2 CASE JOINTS (80), (110°) ARC	MOTOR	MGT	AMB	O-RING	WIND	
O MUCH WORSE VISUALLY THAN SRM-22	Dm-+	68	36	47	(о трн	
	Dm - 2	76	45	52	lo mpu	
SRM 22 BLOW-BY	Qm - 3	72.5	40	48	10 m PH	
0 2 CASE JOINTS (30-40°)	Qm - 4-	76	48	51	10 m PH	
	SRM-15	52	64	53	10 mPH	
SRM-13 A, 15, 16A, 18, 23A 24A	5R.M-22	77	78	75	IC MPH	
O NOZZLE BLOW-BY	5 Rm - 25	55	26	29 27	10 MPH 25 MPH	

A more effective summary of the data

Flight	Date	Temperature °F	Erosion incidents	Blow-by incidents	Damage index	Comments
51-C	01.24.85	53°	3	2	11	Most erosion any flight; blow-by; back-up rings heated.
41-B	02.03.84	57°	1		4	Deep, extensive crosion.
61-C	01.12.86	58°	1		4	O-ring erosion on launch two weeks before Challenger.
41-C	04.06.84	63°	1		2	O-rings showed signs of heating, but no damage.
1	04.12.81	66°			0	Coolest (66°) launch without O-ring problems.
6	04.04.83	67°			0	
51-A	11.08.84	67°			0	
51-D	04.12.85	67°			0	
5	11.11.82	68°			0	
3	03.22.82	69°			0	
2	11.12.81	70°	1		4	Extent of erosion not fully known.
9	11.28.83	70°			0	
41-D	08.30.84	70°	1		4	
51-G	06.17.85	70°			0	
7	06.18.83	72°			0	
8	08.30.83	73°			0	
51-B	04.29.85	75°			0	
61-A	10.30.85	75°		2	4	No erosion. Soot found behind two primary O-rings.
51-I	08.27.85	76°			0	
61-B	11.26.85	76°			0	
41-G	10.05.84	- 78°			0	
51-]	10.03.85	79°			0	
4	06.27.82	80°			?	O-ring condition unknown; rocket casing lost at sea.
51-F	07.29.85	81°			0	

Tufte, 1997

An even more effective visualization of the data

What are the two important takeaway messages?

adapted from Tufte, 1997

It's very easy to find bad graphs

in late August. 9,000 drivers travel areas daily, accord-**F** numbers from 2011, ent year available. uncement follows a . 22, in which an overstruck the Virginia dge, shutting down I-65 and eastbound rgency repairs over d.

has recorded more nilar incidents since

to emphasize that the structurally safe," sson, INDOT deputy er. "Our goal is to derobability of bridge

e closure, Wingfield vement will be low-

» See SPLIT, Page B3

https://flowingdata.com/2013/07/15/open-thread-what-is-wrong-with-these-charts/

Types of debt

The total owed by the average U.S. household, by debt type.

http://viz.wtf/

http://viz.wtf/

Principles of good visualizations

- 1. Show the data and make them stand out
 - Avoid clutter and chartjunk
- 2. Avoid distorting the data
 - Use proper scales
- 3. Keep human limitations in mind
- 4. Reveal the underlying message of the data
 - Make captions and labels clear and informative

Show us the data!

https://www.autodeskresearch.com/publications/samestats

Not a very good graph

```
dfmean <- NHANES_adult %>%
group_by(Gender) %>%
summarise(Height=mean(Height))
```

```
ggplot(dfmean,aes(x=Gender,y=Height)) +
geom_bar(stat="identity") +
```


ggplot(NHANES_adult,aes(x=Gender,y=Height)) +
geom_boxplot()

Also great: Violin plot

ggplot(NHANES_adult,aes(x=Gender,y=Height)) +
geom_violin()

Maximize the data-ink ratio

Amount of ink used on data

Data-ink ratio =

Total amount of ink

Maximizing the data-ink ratio

Avoid "chartjunk"

• Extraneous visual elements

Stanford University

Rule #1 for avoiding bad visualizations: Don't use Microsoft Office to generate them

Avoiding chartjunk

Avoid textures and images in plots

Avoid distorting the data

- Use appropriate scales for the Y axis
- Beware of effects that distort the data

Violent crime was flat from 1990-2014

Wait... Violent crime has plummeted since 1990!

Should you always include zero in the y axis?

Using zero as the basis often makes no sense

It's ok not to start your Y axis at zero

"In general, in a time-series, use a baseline that shows the data not the zero point; don't spend a lot of empty vertical space trying to reach down to the zero point at the cost of hiding what is going on in the data line itself." Edward Tufte

https://qz.com/418083/its-ok-not-to-start-your-y-axis-at-zero/

The "Lie Factor"

- Tufte, 1983
- The size of the effect on the physical graphic, relative to the size of the effect in the data
- A lie factor of about 1 is good

The Lie Factor

- Change in fuel economy from 1978-1985 = 53% (0.53)
- Change in graphic = change from 0.6" to 5.3"
- (5.3 0.6)/0.6 = 7.83 = 783%
- Lie Factor = 7.83/0.53 = 14.8 -- almost 15 times reality

Tufte, 1983/R. Smith

Always use zero as the basis for bar/column charts

• Doing otherwise introduces a potential lie factor

Remember human limitations

- Perceptual limitations
 - Many people have problematic color vision
 - Volume/area is harder to perceive than length
- Cognitive limitations
 - We have limited working memory capacity
 - Don't make the viewer remember too much

Always use brightness contrast in addition to color

Volume can be very hard to distinguish visually Don't make your viewer remember too much

The <a>Outline The <a>Outline <a>Outline</a

Group exercise

- What is the message of this visualization?
- How could that message be better conveyed?

4.11% OF ADDRESSES OWN 96.53% OF BTC*

* Data as of September 12th, 2017

https://howmuch.net/articles/bitcoin-wealth-distribution

Correcting for other factors

- Inflation
- Population size
- Seasonal adjustment

Gasoline prices, with and without adjustment for inflation (using CPI)

Recap

- Focus on showing the data and revealing its story
- Don't misrepresent the data through graphics